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The physical principles governing the vibration-extrusion discharge of disperse systems are
discussed. The criterion for optimizing this process is obtained and methods for achieving
it are indicated.

It is shown in [1-4] that for certain vibrational modes of a working device (container, trough, etc.) a
free-flowing viscous material is separated from the bottom of the vibrating device with subsequent separate
motions of the material and container.

In the present paper we examine the vibration-extrusion discharge from a container of disperse sys-
tems with viscous friction for the possibility of an effective technological use of this process.

It is known that when a vibrating container and a viscous material move separately there is a viscous
interaction between them and a dissipation of energy of the material during its separation and interaction
with the surrounding medium. Separate motion ends with an impact which in the first approximation can be
considered as instantaneous and completely inelastic.

As a consequence of the large dissipation of energy in the material, wave processes initiated in it after
impact are rapidly damped out.

1t should also be noted that a shock wave is propagated rather rapidly in the vibrating viscous material,
since the effect is transmitted at the speed of sound and the thickness of the layer of material is relatively
small, and therefore we can assume that the total mass of material simultaneously makes an inelastic colli-
sion with the bottom of the container (Fig. 1).

After separation of the material an air cushion is formed between it and the bottom of the container.
Because of the hole in the bottom of the container this cushion does not exert an appreciable elastic resis-
tance during the time preceding the impact.

Material is discharged through the hole in the vibrating container.

If the acceleration of the vibrating system is greater than the acceleration due to gravity, there is an
instantaneous decrease in the vibrating mass which is equal to the mass my of the material which has
"taken off" and an instantaneous increase in the mass of the "pulled down™ material by the same amount when
they collide.

The equation describing the vibrations of the system can be written in the form
mli:'—i—ﬁx'—}Cx:m)g—{—F(t), » {1)

where m; = m T gmy becomes a step function of the law of motion sought, g is the acceleration due to gravity,
and o equals 1 for common motion and 0 for the separate motions of the container and material.

Equation (1) is nonlinear even without taking account of the effect of the impact, and m; becomes dis-
continuous during acceleration, having a first-order discontinuity when the separation and recombination of
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mass of the vibrating material are idealized as instantaneous processes, since ¢ is a function of the re-
quired solution and its second derivative.

The instantaneous impact idealization also leads to 2 nonlinear effect of the delta function type with the
strength and instant of the action determined by the vibration regime sought.

Agsuming that the interaction is weak, the motion of the container can be considered sinusoidal in the
first approximation, and the asymptotic method [5] can be used.

To obtain the equations of motion we use expressions for the kinetic energy T, the potential energy V,
and the dissipative function ® which take account of the possibility of the separation of material:
T= %— [mx® + omy x2 + myx2 (1— 0)],
| ' (2)
V= ? Cx?— [mq (x) -+ amyq (x) + myg (x,) (1 —a)),
1 . .. .
¢=—§-[Bx’+ﬁo(x—x.,)’(l—_—o)+ﬁlx%(l—0)l- (3)
The instant of separation t; of material from the container is determined from the condition
i) = dqx (t,)] , (4)
dx
after which the masses m and my move separately until they collide, starting at the time t; when
x(t) = %, (4). (5)
The position x(tg) and velocity X(ty) of the total mass at the instant of separation are the initial condi-
tions for the motion of the mass my.
At the instant of impact the velocity of the contamer changes abruptly, as given by

M+ 0= ™G ?,),11'”;1:"’ G—0 | (6

The initial conditions for the common motion stage are x(t;) and x(t; ¥ 0), where X(t; * 0) is the
velocity of the material after impact.

After impact and until the common motion ceases there will be a vibration-extrusion discharge of free-
flowing or viscous material from a constant height h through the hole in the bottom of the container with the

velocity 7
rel"‘ l,/2h[ dq(x) —X }4' (7

-if the flow is laminar, i.e., if Re < Regy.
For turbulent flow when Re > Regy the vibration-extrusion discharge velocity of the material will be

p e = ®

where the function ¢ (Re) is found experimentally.

Optimization seeks to increase the absolute velocity of the vibration-extrusion discharge of material
which, taking account of the technological features of the process, can enter a stationary or moving volume
such as a form for the vibrational compaction of a concrete mixture.

142



In the case under consideration, achieving the required degree of compaction, i.e., the necessary density
of the material, depends on the absolute velocity of discharge of the concrete mixture.

The absolute discharge velocity of the material is given by
V=X+ Uy = X+ ‘/2h[—dq;:) ——}'c}, (9

where X is the velocity of the vibrations of the container.

In addition to the exciting force F(t) of the vibrator, the container is also subjected to the reaction R
of the discharging stream of material given by the expression

Rdf = vreldm,'
where dm is an element of mass. Hence,
[ dg(x)
dx

W7
. R=25ph ! —X J’ ko, (10)

where k is the contraction coefficient of the effluent stream.

Introducing the mass m, which takes account of the reaction of the stream, in the form

m = 2Skph, (11)
we obtain the equations of motion of the container and material:
Cm At (my— m)o] & + Bx By (1 —0) (x — %) -+ Cx = F(t) + [m+ (my—m)o] g;; (12)
[mo".‘o + B, J"e—ﬁo('%_xo)”"mogﬂ(l"“o'): C, (13)
where
R ACH R I
g = {in the gravitational field g; = g).

dx
For common motion ¢ =1 and Eq. (13) becomes an identity,

Cx()=x,(). 4
We choose the period T of the exciting force F(t) as the time standard and take gy as the standard of
acceleration. Then the velocity standard will be g;T and the length standard, giTZ.

Transformation to dimensionless variables gives
X Xy

H
= —, = ——, = . 14
T T Yo T (14)
In terms of the new variables, Egs. (12) and (13) become
U+ E—E)oly +ay +a(y —y)(l—o)+o% =[O+ 1+ E—E)0; (15)
(1—0) By, — a2 (¥ — ¥p) +oyy—El =0, (16)
where
= M _m = T
b= B =
2 )
Ty = BOT s Uy = lT s @® = CT
_ m m m
We determine the instant of separation 7 from the expression
Pyt =1 (18)
in the same way as the instant of impact, 74 is determined from the equation
| ym) = (W) (19)
as its nearest root to the right of 7.
The initial velocity of the common motion of the container and material is
' ' (1, — 0 (7, — 0
§ (1, +0) = ¥ (% )*_i‘T_g!/u(l ) ) . (20)
1+§
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Fig. 2. Graph of the periodic solution of Egs.
(15) and (16) obtained by computer.

If the vibrations are excited by a harmonic force

F(fy=F,sinvf and T 2n ., (21)
- - .
then
f (1) = f,sin2ar, . (22)
where
F,
fo=—=2 (23)
mg,

In this formulation of the problem the goal of the optimization is to increase the maximum discharge
velocity for the function

J@ =y @) +u,VI—¢ @ (24)
on the interval 74 < T < 7y 7 1, where
2h
Uy = 17 " (25)
If restrictions are imposed on the magnitude of the impact impulse, the inequality
3 , .
T+ g (ty—0) — gy (v, — 0)| << J,,. (26)

must be satisfied, where the dimensionless quantity J; is related to the permissible value of the impact im-
pulse J by the relation

J
= gl (27)

Jo

Another restriction may be the guarantee of a given output
To1

} Vi—y @ dvsdy,

Ty

where 31 characterizes the amount of material discharged during éperiod of steady vibrations.

It is clear that the calculation of

Vimax == Max, max .'/(t),
& B fo oy TE(T, T D) (28)
when (26) is satisfied is performed for steady vibrational regimes; i.e., when
YT+ 1) =9 %t +1)= 4 )
Y (5 + 1) =y (%), ¥ (1 +1—0) =y, (1,—0). _
Figure 2 shows a graph of the periodic solution of Egs. (15) and (16) found numerically by computer.

(29)

Figure 2 shows that the impact impulse decreases with decreasing relative velocity of the container and
material at collision; i.e., if the collision occurs before the maximum of y (1), the velocities y'(7) and y§(7
are nearly the same.

The periodic solution of Eqgs. (15) and (16) can be obtained by the method of matching, but the analytic
solution is complicated, involving a series of transcendental equations, and requires finding the roots ofa
cubic equation; therefore, it is expedient to use an analog—digital complex to investigate the separate mo-
tions. This enables one to study different variants, to separate out the admissible ones, and to select the one
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closest to optimum. The initial conditions for the first stage are best chosen by finding an approximate solu-
tion by the asymptotic method [5], varying the parameters of the vibrating system (the stiffness of the '
elastic couplings and the amplitude of the exciting force) and the area of the hole, the depth of the layer of
material, and the ratio of the masses of the material and the container.

It is convenient to use the method of gradient search to choose the initial parameters of the experi-
mental —commercial sample of the vibration extruder to obtain the optimum variant.

It is also possible to choose the optimum exciting function F(t) without presupposing that it is sinu-
soidal, but only periodic.

Thus, the problem can be formulated as a problem of parametric optimization, and more generally as
a problem of optimum control. The optimization criterion chosen in (24) corresponds to the use of a vibra-
tion extruder for disperse systems such as concrete mixtures, where the useful effectis the pressure head of
‘the emerging portion of the concrete mixture. This is helpful in filling a form for a concrete product [6].

A sample of a vibration extruder was tested on the Khar'kov DSK-1,

The experiments showed that the vibration-extrusion discharge of low-slump concrete mixtures can be
used to increase the assembly-line production of reinforced-concrete products.

NOTATION

_ mgy, mass of material; m, mass of container; C, stiffness of elastic couplings; F(t), exciting force;
T, kinetic energy; V, potential energy; &, dissipative function; q(x) potential of field; 8, By, By, equivalent
coefficients of viscous resistance to the motion of container, material relative to container, and material
relative to medium, respectively; x, xg, absolute displacements of container and material; {;, instant of
separation of material from container; t;, instant of collision of material with container; h, depth of material
in container; Re, Reynolds number; v, absolute velocity of discharge of material; vyel, relative velocity of
discharge of material; X, velocity of vibrating container; R, reaction to effluent stream of material; p, den-
sity of material; S, area of hole; m, mass of material; k, contraction coefficient of stream; 7, y', yo,
dimensionless time, velocity, and displacement; T, period of vibrations; v, circular frequency; dot over a
quantity denotes its time derivative.
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